Winning a game of tennis: using Markov Chain theory

A Markov Chain, named for Andrey Markov, is a mathematical system that undergoes transitions from one state to another (from a finite or countable number of possible states) in a chainlike manner. It is a random process characterized as memoryless (i.e. exhibiting the Markov property): the next state depends only on the current state and not on the entire past. Markov chains have many applications as statistical models of real-world processes and can be applied to tennis.

Each score in a game of tennis is a state of the system as represented in table 1. Note that (40-30) and ad-in, (30,30) and deuce, and (30,40) and ad-out are equivalent states.

State	Score
0	(0,0)
1	(15,0)
2	(0,15)
3	(30,0)
4	(15,15)
5	(0,30)
6	(40,0)
7	(30,15)
8	(15,30)
9	(0,40)
10	(40,15)
11	(15,40)
12	game server
13	game receiver
14	(40,30) or ad-in
15	(30,30) or deuce
16	(30,40) or ad-out

Table 1: Scores in a game of tennis represented as states of a system

Let *p* represent the probability of the server winning a point and q=1-p.

The transition matrix given by table 2 represents the probability $P_{i,j}$ that the process will, when in state *i*, next make a transition into state *j*. For example the probability $P_{0,1}$ of going from state 0 (score (0,0)) to state 1 (score (15,0)) is *p*. Similarly, the probability $P_{0,2}$ of going from state 0 (score (0,0)) to state 2 (score (0,15)) is *q*. Note that $\sum_i P_{i,j} = 1$.

We have already defined the one-step transition probabilities $P_{i,j}$. We now define the *n*-step transition probabilities $P_{i,j}^n$ to be the probability that a process in state *i* will be in state *j* after *n* additional transitions. The Chapman-Kolomogorov equations provide a method for computing these *n*-step transition probabilities and is shown that the *n*-step transition matrix may be obtained by multiplying the matrix by itself *n* times. Table 3 represents the transition matrix $P_{i,j}^2$. For example $P_{0,3}^2$ is the probability of being at score line (30,0) from score line (0,0) after two points have been played. From table 3 this is given as p^2 as expected.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	р	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	р	q	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	р	q	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	р	q	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	р	q	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	р	q	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	q	0	р	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	р	0	0	0	0	q	0
8	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	р	0
9	0	0	0	0	0	0	0	0	0	0	0	р	0	q	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	р	0	q	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	р
12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	р	0	0	q	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	р	0	q
16	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	р	0

Table 2: Transition matrix for a game of tennis

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	<i>p</i> ²	2pq	q^2	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	<i>p</i> ²	2pq	<i>q</i> ²	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	<i>p</i> ²	2pq	q^2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	2pq	0	<i>p</i> ²	0	0	<i>q</i> ²	0
4	0	0	0	0	0	0	0	0	0	0	<i>p</i> ²	<i>q</i> ²	0	0	0	2pq	0
5	0	0	0	0	0	0	0	0	0	0	0	2pq	0	q^2	0	<i>p</i> ²	0
6	0	0	0	0	0	0	0	0	0	0	0	0	pq+p	0	<i>q</i> ²	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	<i>p</i> ²	0	2pq	0	<i>q</i> ²
8	0	0	0	0	0	0	0	0	0	0	0	0	0	q^2	<i>p</i> ²	0	2pq
9	0	0	0	0	0	0	0	0	0	0	0	0	0	pq+p	0	0	<i>p</i> ²
10	0	0	0	0	0	0	0	0	0	0	0	0	pq+p	0	0	<i>q</i> ²	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	pq+p	0	<i>p</i> ²	0
12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	р	0	pq	0	q^2
15	0	0	0	0	0	0	0	0	0	0	0	0	<i>p</i> ²	q^2	0	2pq	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	q	<i>p</i> ²	0	pq

Table 3: Transition matrix $P^{2}_{i,j}$ for a game of tennis

Note that $\sum_{i} P^{n}_{i,j} = 1$

Using a four-step transition matrix: Probability server winning to $0 = P^4_{(0,12)} = p^4$ Probability receiver winning to $0 = P^4_{(0,13)} = q^4$ Using a five-step transition matrix: Probability server winning to $15 = P^{5}_{(0,12)} - P^{4}_{(0,12)} = (4p^{4}q+p^{4})-p^{4}=4p^{4}q$ Probability receiver winning to $15 = P^{5}_{(0,13)} - P^{4}_{(0,13)} = (4q^{4}p+q^{4})-q^{4}=4q^{4}p$

Using a six-step transition matrix: Probability server winning to $30 = P^{6}_{(0,12)} - (P^{5}_{(0,12)} - P^{4}_{(0,12)}) - P^{4}_{(0,12)} = P^{6}_{(0,12)} - P^{5}_{(0,12)} = (10p^{4}q^{4} + 4p^{4}q + p^{4}) - (4p^{4}q + p^{4}) = 10p^{4}q^{2}$ Probability receiver winning to $30 = P^{6}_{(0,13)} - (P^{5}_{(0,13)} - P^{4}_{(0,13)}) - P^{4}_{(0,13)} = P^{6}_{(0,13)} - P^{5}_{(0,13)} = (10q^{4}p^{4} + 4q^{4}p + q^{4}) - (4q^{4}p + q^{4}) = 10q^{4}p^{2}$ Probability reaching deuce $= P^{6}_{(0,15)} = 20p^{3}q^{3}$

Hence the probability of the server winning the game prior to deuce is given by $p^4+4p^4q+10p^4q^2 = p^4(1+4q+10q^2)$

Note the probability of winning from deuce using Markov Chain theory is outlined in Kemeny and ${\rm Snell}^1$

Reference

¹ Kemeny, J. and Snell, J. Finite Markov Chains. Van Nostrand, Princeton, NJ. 1976, p163